Eighteen‐year nitrogen addition does not increase plant phosphorus demand in a nitrogen‐saturated tropical forest

Author:

Yu Guangcan123ORCID,Chen Jing123ORCID,Yu Mengxiao12ORCID,Li Andi123ORCID,Wang Ying‐Ping4ORCID,He Xinhua156ORCID,Tang Xuli12ORCID,Liu Hui12ORCID,Jiang Jun12ORCID,Mo Jiangming12ORCID,Zhang Shuo78ORCID,Yan Junhua12ORCID,Zheng Mianhai12ORCID

Affiliation:

1. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden Chinese Academy of Sciences Guangzhou China

2. South China National Botanical Garden Guangzhou China

3. University of Chinese Academy of Sciences Beijing China

4. CSIRO Oceans and Atmosphere Aspendale Victoria Australia

5. School of Biological Sciences University of Western Australia Perth Western Australia Australia

6. Department of Land, Air and Water Resources University of California Davis California USA

7. Zhaoqing Municipal Bureau of Forestry Zhaoqing China

8. Center for Zhaoqing High‐level Talent Development Zhaoqing China

Abstract

Abstract Nitrogen (N) deposition usually increases plant tissue N concentrations and thus phosphorus (P) demand in young and/or N‐limited forests, but the N deposition effect on plant P demand has rarely been assessed in N‐saturated forests. Impacts of 18‐year external N additions (Control: 0, Low N: 50, Moderate N:100 and High N: 150 kg N ha−1 year−1) on leaf P of four plant life‐forms (tree, shrub, herb and liana), P fractions of bulk and rhizosphere soils were examined in a N‐saturated mature tropical forest in southern China. Leaf N, P and N: P ratios of all plant life‐forms remained stable under three N additions. Among soil P fractions, moderate labile organic P increased by 25%–33% across three N additions; and soil total P was increased by 11.76% under Low N, and 8.87% under High N, compared with the control. The PLS‐PM results showed that path coefficient of microbial community to available P significantly increased and of inorganic P to available P significantly decreased under N additions than control. N additions improved soil P availability through microbe‐mediated P transformation: Low N significantly increased soil microbial taxonomic diversity, and a higher microbial diversity could enlarge the sources of nutrient acquisition and stimulate decomposition of recalcitrant organic matters; while High N significantly decreased soil microbial taxonomic diversity, the remaining microorganisms that were screened by N‐rich environments had the characteristics of resisting the N addition effects and maintained efficient P acquisition. Synthesis. Our findings provide a novel line of evidence that long‐term N deposition did not increase plant P demand in a N‐saturated mature tropical forest. The underlying mechanism is that plants did not increase N uptakes therefore nor increase P uptakes (a stable leaf N: P stoichiometry) in an already N‐saturated ecosystem. Different N addition rates regulated soil P transformation via microbial community transition. These findings help improve the understanding of plant P acquisition and modelling of biogeochemical N–P cycling and vegetation productivity in N‐rich forest ecosystems, particularly considering the fact that chronic N deposition may likely lead to soil N richness and even saturation of many forests in the future.

Funder

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3