Effect of Nitrogen on Microbial Communities of Purple Mudstone Weathering Products in Southwest China: A Column Experiment

Author:

Li Chunpei123,Li Wanting1,Xu Peng2,Wang Xuan23,Tang Jialiang2ORCID,Liu Gangcai2ORCID,Wang Ting1,Zhao Jixia1

Affiliation:

1. College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China

2. Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, and Ministry of Water Conservancy, Chengdu 610041, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Nitrogen application significantly affects microorganisms in agricultural ecosystems. However, it is still unclear how nitrogen application affects soil chemical properties and microbial communities in purple mudstone weathering products. In this study, a field soil column experiment was conducted in a typical purple soil area with four nitrogen fertilizer application gradients of 0 [CK], 280 [N1], 560 [N2], and 840 [N3] N kg ha−1. Nitrogen addition decreased the bacterial chao1 value and increased the bacterial evenness index. For both α- and β-diversity, the effect of nitrogen addition on bacteria was much greater than that on fungi. Nitrogen addition significantly increased the relative abundance of Proteobacteria, Gemmatimonadetes, Bacteroidetes, and Ascomycota and decreased the relative abundance of Actinobacteria, Cyanobacteria, and Basidiomycota. Both pH and TC are the most important soil chemical properties influencing the bacterial and fungal communities. With the increases in the nitrogen application rate, the co-occurrence network complexity increased and then decreased. In summary, nitrogen fertilizer application could significantly change the soil chemical properties, microbial community diversity, composition, and co-occurrence network of purple mudstone weathering products. Among them, the N2 treatment (560 N kg∙ha−1) can more effectively stimulate the soil nutrients, enhance microbial network complexity, and promote further weathering of purple mudstone.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Yunnan Basic Research Project-general projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3