Limited range shifting in biocrusts despite climate warming: A 25‐year resurvey

Author:

Mallen‐Cooper Max12ORCID,Cornwell William K.1ORCID,Slavich Eve3ORCID,Sabot Manon E. B.45ORCID,Xirocostas Zoe A.1ORCID,Eldridge David J.12ORCID

Affiliation:

1. Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia

2. Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia

3. School of Mathematics and Statistics University of New South Wales Sydney New South Wales Australia

4. Climate Change Research Centre University of New South Wales Sydney New South Wales Australia

5. ARC Centre of Excellence for Climate Extremes Sydney New South Wales Australia

Abstract

Abstract The ranges of many species globally have already shifted to maintain climatic equilibrium in the face of climate change. Biocrusts—soil surface dwelling communities of lichens, bryophytes and microbes—play important functional roles in many ecosystems, particularly in drylands. Compared to better studied animal and plant taxa, dryland biocrusts have different establishment requirements and have never been assessed for historical range shifts. Here, we revisited the sites (N = 204) of a 25‐year‐old biocrust survey across a large area (400,000 km2) of drylands in south‐eastern Australia. We used quadratic models to quantify changes in the climate niches of 15 lichen, eight moss and five liverwort taxa, as well as biocrust cover and richness. Our models showed that the observed climatic niches of most taxa have become hotter and drier in the past quarter century, yet the responses of the vast majority of taxa are consistent with remaining in the same geographic space. A similar pattern was observed at the community level, where the peak of biocrust cover and richness now occurs in a hotter, drier environment. Notable exceptions were the liverwort Riccia lamellosa and lichens in the genera Cladonia and Xanthoparmelia, which showed signs of contraction at their arid range edges. Unlike more mobile taxa, most biocrust species have yet to shift geographically and may already be lagging behind the pace of climate change. One explanation for the mortality lag is that long‐term climate variability in the system is extensive, which may have selected for the ability to withstand multi‐year warm periods as long as there is an eventual return to milder conditions. However, no forecasts of future climate include a return to milder conditions, suggesting there will be an eventual loss of ecosystem multifunctionality at the contracting front. Expansion lags are most likely due to delays in the mortality of competing vascular plants. Synthesis: Our study provides a valuable contribution to the knowledge of range shifts in understudied taxa and highlights a future need to promote the expansion of biocrusts to maintain the provision of ecosystem functions and services across their range.

Funder

Holsworth Wildlife Research Endowment

Australian National University

Publisher

Wiley

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3