Affiliation:
1. Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences University of South Africa Florida South Africa
Abstract
AbstractA total of 23 studies were identified in a literature search performed in the Scopus, Science Direct and Google Scholar databases for meta‐analysis. The criteria used include studies that were published from 2015 to 2023 and those reporting the effects of insect meal utilisation in poultry diets. Data on live weight (LW), carcass weight (CW), moisture, meat pH, lightness (L*), redness (a*), yellowness (b*), proximate composition (protein, fat and ash content) and shear force in broilers were subjected to OpenMEE software, and data were pooled using a random‐effect model. Subgroup analysis and meta‐regression were performed to ascertain the influence of dietary insect meals on the response of meat aspects and the source of heterogeneity, respectively, using the following moderators (insect species, dosage level, feeding duration and age at slaughter). The results indicated that dietary insect meal did not affect LW, CW, meat L*, pH, shear force, moisture, fat and ash content. In contrast, dietary insect meal increased the a* of the meat (standardised mean differences (SMDs) = 1.03; 95% confidence intervals (CIs) = 0.484–1.578; p ≤ 0.001), b* (SMD = 1.117; 95% CI = 0.334–1.90; p = 0.005), and meat protein content (SMD = 0.365; 95% CI = 0.031–0.7; p = 0.032). The subgroup analysis showed that insect meal dosage of ≤10% and age at slaughtered ≤35 days had improved the LW, CW and meat L*. In addition, the meat a*, protein and ash content were also influenced by insect species, dosage levels and age at slaughter. In conclusion, ≤10% of either Hermetia illucens or Tenebrio molitor can be included in broiler diets without compromising the LW, CW, meat pH, colour, shear force, moisture, fat and ash content in broilers. The study therefore indicated that insect meals have a bright future as an alternative protein source in poultry diets.