Global yield from aquaculture systems

Author:

Fong Caitlin R.1ORCID,Gonzales Claire M.2,Rennick Mae2,Gardner Luke D.34,Halpern Benjamin S.15,Froehlich Halley E.26ORCID

Affiliation:

1. National Center for Ecological Analysis and Synthesis Santa Barbara California USA

2. Department of Ecology, Evolution and Marine Biology University of California Santa Barbara California USA

3. Moss Landing Marine Laboratories Moss Landing USA

4. California Sea Grant San Diego California USA

5. Bren School of Environmental Science and Management University of California Santa Barbara California USA

6. Environmental Studies Program University of California Santa Barbara California USA

Abstract

AbstractAquaculture is expected to expand significantly in the coming decades to meet growing demand. A key variable for understanding the potential benefit of and impact from this growth is efficiency; yet a comprehensive assessment of on‐farm area use and yield is limited. Much like land‐based agriculture, range and variation in yields across space, species, and practice provide insights into area use and production efficiencies. Current estimates of aquaculture yields (production per area per time) aggregate on‐farm and off‐farm land use into one ‘land use’ category; in contrast, we disaggregate this category to provide on‐farm yield estimates and account for water area use. We use a quantitative review of scientific literature to synthesize and compare on‐farm area use and yield patterns across countries, taxa, aquatic systems, data source, and production mode (n = 378). Because recirculating aquaculture systems (RAS) have been touted as a particularly efficient production mode, we also found estimates for RAS from industry (n = 4). Median, mean and range in yields among countries and taxa vary by orders of magnitude, with algal production greatly exceeding that of crustaceans, fishes and molluscs. Yields in marine systems were on average roughly 5× greater than yields in freshwater systems. RAS had particularly high yields but sparse data and estimates from private corporations were approximately 3.7× higher than literature estimates, on average. This comprehensive assessment of global aquaculture yields offers critical insight into the production efficiencies of different aquaculture forms and the large amount of variability, which could help guide aquaculture policy and practice.

Funder

California Ocean Protection Council

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Ecology,Aquatic Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3