High landscape‐scale forest cover favours cold‐adapted plant communities in agriculture–forest mosaics

Author:

Borderieux Jeremy1ORCID,Gégout Jean‐Claude1ORCID,Serra‐Diaz Josep M.12ORCID

Affiliation:

1. AgroParisTech, INRAE, UMR Silva Université de Lorraine Nancy France

2. Eversource Energy Center and Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA

Abstract

AbstractAimThe ongoing climate warming is expected to reshuffle understorey plant community composition by increasing the occurrence of warm‐adapted species at the expense of cold‐adapted species. This process has been evidenced before by a warming community temperature index (CTI) over time. However, data indicate that the local tree canopy can partly explain an observed lag between understorey plant CTI and climate warming rates, though landscape‐scale forest cover effects have not yet been investigated. Here, we test the hypothesis that the amount of forest cover in the landscape lowers local CTI.LocationTemperate forests in France.Time period2005–2019.Major taxa studiedForest vascular plants.MethodsWe compared 2,012 pairs of neighbouring French forest inventory plots with contrasting percentages of forest cover within a 1‐km radius area (landscape forest cover). We computed the difference in the CTI of the understorey communities for each pair and tested the contributions of the landscape‐scale forest cover, local canopy cover, and soil conditions to the differences in CTI.ResultsPlots located in highly forested areas (> 80% in the 1‐km area) had an average CTI 0.26 °C lower (0.81 °C SD) than plots in sparsely forested areas (< 30% in the 1‐km area). Fifty percent of this difference was explained by landscape‐scale forest cover. Bioindicated soil conditions such as pH and available nutrients, which correlated with cold‐adapted species preferences, explained the remaining 50%.Main conclusionsHighly forested landscapes allow cold‐adapted species to survive in given macroclimatic conditions. These landscapes meet cold‐adapted species’ soil requirements and may cool the regional climate. Further microclimatic studies are needed to confirm the cooling capacity of landscape‐scale forest cover.

Funder

Agence Nationale de la Recherche

AgroParisTech

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3