Ecological indicator values of understorey plants perform poorly to infer forest microclimate temperature

Author:

Gril Eva1ORCID,Spicher Fabien1ORCID,Vanderpoorten Alain2ORCID,Vital Germain1,Brasseur Boris1ORCID,Gallet‐Moron Emilie1ORCID,Le Roux Vincent1ORCID,Decocq Guillaume1ORCID,Lenoir Jonathan1ORCID,Marrec Ronan1ORCID

Affiliation:

1. UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN) Université de Picardie Jules Verne Amiens France

2. Botany Institute University of Liège Liège Belgium

Abstract

AbstractQuestionEcological indicator values (EIVs) reflect species‘ optimal conditions on an environmental gradient, such as temperature. Averaged over a community, they are used to quantify thermophilization stemming from climate change, i.e. the reshuffling of communities toward more warm‐adapted species. In forests, understorey plant communities do not keep up with global warming and accumulate a climatic debt. Although the causes are still debated, this thermal lag may be partly explained by forest microclimate buffering. For the first time, we test whether community means of EIVs are able to capture microclimate (here, under forest canopies) temperature across, or also within forests.Location157 forest plots across three French deciduous forests covering a large macroclimatic gradient.MethodsTo assess whether EIVs can be used to infer the mean and range of microclimate temperature in forests, we measured understorey air temperature for ca. 1 year (10 months) with sensors located 1 m above the ground. We surveyed bryophytes and vascular plants within 400‐m2 plots, and computed floristic temperature from ordinal‐scale EIVs (Ellenberg, Julve) and degree‐scale EIVs (ClimPlant, Bryophytes of Europe Traits) for both temperature and continentality, i.e. temperature annual range. Finally, we fitted linear models to assess whether EIVs could explain the mean and range of microclimate temperature in forests.ResultsVascular plant and bryophyte communities successfully reflected differences in mean annual temperatures across forests but largely failed to do so for microclimate variation within forests. Bryophytes did not perform better than vascular plants to infer microclimate conditions. The annual range of microclimate temperatures was poorly associated with ordinal‐scale EIVs for continentality but was positively correlated with degree‐scale EIVs for annual range within lowland forests, especially for vascular plant communities.ConclusionOverall, the capabilities of EIVs to infer microclimate was inconsistent. Refined EIVs for temperature are needed to capture forest microclimates experienced by understorey species.

Funder

Agence Nationale de la Recherche

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3