The Inner Loop of Collective Human–Machine Intelligence

Author:

Yang Scott Cheng‐Hsin1,Folke Tomas1,Shafto Patrick12

Affiliation:

1. Department of Mathematics and Computer Science Rutgers University

2. School of Mathematics Institute for Advanced Studies

Abstract

AbstractWith the rise of artificial intelligence (AI) and the desire to ensure that such machines work well with humans, it is essential for AI systems to actively model their human teammates, a capability referred to as Machine Theory of Mind (MToM). In this paper, we introduce the inner loop of human–machine teaming expressed as communication with MToM capability. We present three different approaches to MToM: (1) constructing models of human inference with well‐validated psychological theories and empirical measurements; (2) modeling human as a copy of the AI; and (3) incorporating well‐documented domain knowledge about human behavior into the above two approaches. We offer a formal language for machine communication and MToM, where each term has a clear mechanistic interpretation. We exemplify the overarching formalism and the specific approaches in two concrete example scenarios. Related work that demonstrates these approaches is highlighted along the way. The formalism, examples, and empirical support provide a holistic picture of the inner loop of human–machine teaming as a foundational building block of collective human–machine intelligence.

Publisher

Wiley

Subject

Artificial Intelligence,Cognitive Neuroscience,Human-Computer Interaction,Linguistics and Language,Experimental and Cognitive Psychology

Reference44 articles.

1. Early Diagnosis of Cutaneous Melanoma

2. Abel D.(2022).A theory of abstraction in reinforcement learning.arXiv preprint arXiv:2203.00397.

3. Bachem O. Lucic M. &Krause A.(2017).Practical coreset constructions for machine learning.arXiv preprint arXiv:1703.06476.

4. Bokadia H. Yang S. C.‐H. Li Z. Folke T. &Shafto P.(2022).Evaluating perceptual and semantic interpretability of saliency methods: A case study of melanoma.Applied AI Letters 3 e77.

5. Self-projection and the brain

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3