A Solar and Wind Energy Evaluation Methodology Using Artificial Intelligence Technologies

Author:

Simankov Vladimir1,Buchatskiy Pavel2ORCID,Kazak Anatoliy3ORCID,Teploukhov Semen2ORCID,Onishchenko Stefan2ORCID,Kuzmin Kirill2,Chetyrbok Petr3

Affiliation:

1. Department of Cybersecurity and Information Security, Institute of Computer Systems and Information Security, Kuban State Technological University, 350072 Krasnodar, Russia

2. Department of Automated Information Processing and Management Systems, Adyghe State University, 385000 Maykop, Russia

3. Humanitarian Pedagogical Academy, V.I. Vernadsky Crimean Federal University, 295007 Simferopol, Russia

Abstract

The use of renewable energy sources is becoming increasingly widespread around the world due to various factors, the most relevant of which is the high environmental friendliness of these types of energy resources. However, the large-scale involvement of green energy leads to the creation of distributed energy networks that combine several different generation methods, each of which has its own specific features, and as a result, the data collection and processing necessary to optimize the operation of such energy systems become more relevant. Development of new technologies for the more optimal use of RES is one of the main tasks of modern research in the field of energy, where an important place is assigned to the use of technologies based on artificial intelligence, allowing researchers to significantly increase the efficiency of the use of all types of RES within energy systems. This paper proposes to consider the methodology of application of modern approaches to the assessment of the amount of energy obtained from renewable energy sources based on artificial intelligence technologies, approaches used for data processing and for optimization of the control processes for operating energy systems with the integration of renewable energy sources. The relevance of the work lies in the formation of a general approach applied to the evaluation of renewable energy sources such as solar and wind energy based on the use of artificial intelligence technologies. As a verification of the approach considered by the authors, a number of models for predicting the amount of solar power generation using photovoltaic panels have been implemented, for which modern machine-learning methods have been used. As a result of testing for quality and accuracy, the best results were obtained using a hybrid forecasting model, which combines the joint use of a random forest model applied at the stage of the normalization of the input data, exponential smoothing model, and LSTM model.

Publisher

MDPI AG

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3