Affiliation:
1. School of Computing Science Simon Fraser University British Columbia Canada
2. Urban Resilience.AI Lab Texas A&M University Texas USA
Abstract
AbstractThis paper presents damage assessment using a hierarchical transformer architecture (DAHiTrA), a novel deep‐learning model with hierarchical transformers to classify building damages based on satellite images in the aftermath of natural disasters. Satellite imagery provides real‐time and high‐coverage information and offers opportunities to inform large‐scale postdisaster building damage assessment, which is critical for rapid emergency response. In this work, a novel transformer‐based network is proposed for assessing building damage. This network leverages hierarchical spatial features of multiple resolutions and captures the temporal differences in the feature domain after applying a transformer encoder to the spatial features. The proposed network achieves state‐of‐the‐art performance when tested on a large‐scale disaster damage data set (xBD) for building localization and damage classification, as well as on LEVIR‐CD data set for change detection tasks. In addition, this work introduces a new high‐resolution satellite imagery data set, Ida‐BD (related to 2021 Hurricane Ida in Louisiana) for domain adaptation. Further, it demonstrates an approach of using this data set by adapting the model with limited fine‐tuning and hence applying the model to newly damaged areas with scarce data.
Subject
Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献