Integrated urban land cover analysis using deep learning and post‐classification correction

Author:

Techapinyawat Lapone1ORCID,Timms Aaliyah1,Lee Jim2,Huang Yuxia3,Zhang Hua1

Affiliation:

1. College of Engineering and Computer Science Texas A&M University–Corpus Christi, Corpus Christi Texas USA

2. College of Business Texas A&M University–Corpus Christi, Corpus Christi Texas USA

3. Conrad Blucher Institute Texas A&M University–Corpus Christi, Corpus Christi Texas USA

Abstract

AbstractThe quantification of urban impervious area has important implications for the design and management of urban water and environmental infrastructure systems. This study proposes a deep learning model to classify 15‐cm aerial imagery of urban landscapes, coupled with a vector‐oriented post‐classification processing algorithm for automatically retrieving canopy‐covered impervious surfaces. In a case study in Corpus Christi, TX, deep learning classification covered an area of approximately 312 km2 (or 14.86 billion 0.15‐m pixels), and the post‐classification effort led to the retrieval of over 4 km2 (or 0.18 billion pixels) of additional impervious area. The results also suggest the underestimation of urban impervious area by existing methods that cannot consider the canopy‐covered impervious surfaces. By improving the identification and quantification of various impervious surfaces at the city scale, this study could directly benefit a variety of environmental and infrastructure management practices and enhance the reliability and accuracy of processed‐based models for urban hydrology and water infrastructure.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Wiley

Reference60 articles.

1. Wetland Change Analysis in Alberta, Canada Using Four Decades of Landsat Imagery

2. Coastal coverage of ESA’ Sentinel 2 mission

3. Bodansky E. Gribov A. &Pilouk M.(2002).Smoothing and compression of lines obtained by raster‐to‐vector conversion. InD.Blostein&Y. B.Kwon(Eds.) Graphics recognition algorithms and applications. GREC 2001. Lecture notes in computer science(Vol. 2390).Springer.https://doi.org/10.1007/3‐540‐45868‐9_22

4. Braik A. M. &Koliou M.(2024).Automated building damage assessment and large‐scale mapping by integrating satellite imagery GIS and deep learning.Computer‐Aided Civil and Infrastructure Engineering. Advance online publication.https://doi.org/10.1111/MICE.13197

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3