A Drone Video Clip Dataset and its Applications in Automated Cinematography

Author:

Ashtari Amirsaman1ORCID,Jung Raehyuk1ORCID,Li Mingxiao2ORCID,Noh Junyong1ORCID

Affiliation:

1. KAIST, Daejeon South Korea

2. University of Waterloo Waterloo Canada

Abstract

AbstractDrones became popular video capturing tools. Drone videos in the wild are first captured and then edited by humans to contain aesthetically pleasing camera motions and scenes. Therefore, edited drone videos have extremely useful information for cinematography and for applications such as camera path planning to capture aesthetically pleasing shots. To design intelligent camera path planners, learning drone camera motions from these edited videos is essential. However, first, this requires to filter drone clips and extract their camera motions out of these edited videos that commonly contain both drone and non‐drone content. Moreover, existing video search engines return the whole edited video as a semantic search result and cannot return only drone clips inside an edited video. To address this problem, we proposed the first approach that can automatically retrieve drone clips from an unlabeled video collection using high‐level search queries, such as “drone clips captured outdoor in daytime from rural places”. The retrieved clips also contain camera motions, camera view, and 3D reconstruction of a scene that can help develop intelligent camera path planners. To train our approach, we needed numerous examples of edited drone videos. To this end, we introduced the first large‐scale dataset composed of edited drone videos. This dataset is also used for training and validating our drone video filtering algorithm. Both quantitative and qualitative evaluations have confirmed the validity of our method.

Funder

Korea Creative Content Agency

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3