Isolation and characterization of competitive exclusion microorganisms from animal wastes–based composts against Listeria monocytogenes

Author:

Wang Hongye1ORCID,Jiang Xiuping1ORCID

Affiliation:

1. Department of Food, Nutrition, and Packaging Sciences Clemson University Clemson South Carolina USA

Abstract

Abstract Aim To isolate the slow-growing or viable but non-culturable competitive exclusion (CE) microorganisms from composts and then verify the anti-Listeria monocytogenes activities of those CE isolates in compost. Methods and Results CE strains were isolated from composts using double- or triple-layer agar methods, purified, and then characterized. Both compost extracts and solid compost samples were spiked with a cocktail of 3 L. monocytogenes strains which were co-inoculated with or without CE strain cocktail and incubated at both 22 and 35°C for 168 h. Results indicated that the addition of resuscitation promoting factor (Rpf) promoted the growth of slow-growing species from composts. About 50% of the isolated CE strains (n = 40) were identified as Bacillus spp., 17 strains can inhibit more than 10 tested L. monocytogenes strains, and nine strains were motile and competitive biofilm formers. In compost extracts, the growth potentials of L. monocytogenes were reduced up to 2.2 logs when co-culturing with CE strains. In compost samples, the addition of CE strains reduced L. monocytogenes population by ca. 1.3 log CFU/g at 22°C after 24–168 h incubation. Conclusion Our modified double/triple-layer agar procedure with Rpf as growth supplement coupled with spot-on-lawn testing can be a quick and efficient method for isolating CE candidates from composts. The efficacy of CE strains against L. monocytogenes in compost extracts and compost samples was affected by compost type, nutrient level, and incubation temperature. Significance and Impact of the Study Compost is a rich source of CE microorganisms, and compost-adapted CE microorganisms have the potential as a biological agent to control L. monocytogenes in agricultural environments.

Funder

California Department of Food and Agriculture

University of California

Center for Produce Safety

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3