The evolution of early‐life telomere length, pace‐of‐life and telomere‐chromosome length dynamics in birds

Author:

Pepke Michael Le1ORCID,Ringsby Thor Harald1,Eisenberg Dan T. A.234

Affiliation:

1. Department of Biology, Centre for Biodiversity Dynamics (CBD) Norwegian University of Science and Technology (NTNU) Trondheim Norway

2. Department of Anthropology University of Washington Seattle Washington USA

3. Centre for Studies in Demography and Ecology University of Washington Seattle Washington USA

4. Department of Biology University of Washington Seattle Washington USA

Abstract

AbstractTelomeres, the short DNA sequences that protect chromosome ends, are an ancient molecular structure, which is highly conserved across most eukaryotes. Species differ in their telomere lengths, but the causes of this variation are not well understood. Here, we demonstrate that mean early‐life telomere length is an evolutionary labile trait across 57 bird species (representing 35 families in 12 orders) with the greatest trait diversity found among passerines. Among these species, telomeres are significantly shorter in fast‐lived than in slow‐lived species, suggesting that telomere length may have evolved to mediate trade‐offs between physiological requirements underlying the diversity of pace‐of‐life strategies in birds. This association was attenuated when excluding studies that may include interstitial telomeres in the estimation of mean telomere length. Curiously, within some species, larger individual chromosome size predicts longer telomere lengths on that chromosome, leading to the hypothesis that telomere length also covaries with chromosome length across species. We show that longer mean chromosome length or genome size tends to be associated with longer mean early‐life telomere length (measured across all chromosomes) within a phylogenetic framework constituting up to 31 bird species. These associations were strengthened when excluding highly influential outliers. However, sensitivity analyses suggested that they were susceptible to sample size effects and not robust to the exclusion of studies that may include interstitial telomeres. Combined, our analyses generalize patterns previously found within a few species and provide potential adaptive explanations for the 10‐fold variation in telomere lengths observed among birds.

Funder

Norges Forskningsråd

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3