Auxin biosynthesis gene FveYUC4 is critical for leaf and flower morphogenesis in woodland strawberry

Author:

Lu Rui12,Pi Mengting12,Liu Zhongchi3ORCID,Kang Chunying12ORCID

Affiliation:

1. National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops Huazhong Agricultural University Wuhan 430070 China

2. Hubei Hongshan Laboratory Wuhan 430070 China

3. Department of Cell Biology and Molecular Genetics University of Maryland College Park Maryland 20742 USA

Abstract

SUMMARYAuxin plays an essential role in plant growth and development, particularly in fruit development. The YUCCA (YUC) genes encode flavin monooxygenases that catalyze a rate‐limiting step in auxin biosynthesis. Mutations that disrupt YUC gene function provide useful tools for dissecting general and specific functions of auxin during plant development. In woodland strawberry (Fragaria vesca), two ethyl methanesulfonate mutants, Y422 and Y1011, have been identified that exhibit severe defects in leaves and flowers. In particular, the width of the leaf blade is greatly reduced, and each leaflet in the mutants has fewer and deeper serrations. In addition, the number and shape of the floral organs are altered, resulting in smaller fruits. Mapping by sequencing revealed that both mutations reside in the FveYUC4 gene, and were therefore renamed as yuc4‐1 and yuc4‐2. Consistent with a role for FveYUC4 in auxin synthesis, free auxin and its metabolites are significantly reduced in the yuc4 leaves and flowers. This role of FveYUC4 in leaf and flower development is supported by its high and specific expression in young leaves and flower buds using GUS reporters. Furthermore, germline transformation of pYUC4::YUC4, which resulted in elevated expression of FveYUC4 in yuc4 mutants, not only rescued the leaf and flower defects but also produced parthenocarpic fruits. Taken together, our data demonstrate that FveYUC4 is essential for leaf and flower morphogenesis in woodland strawberry by providing auxin hormone at the proper time and in the right tissues.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3