Toxic temperatures: Bee behaviours exhibit divergent pesticide toxicity relationships with warming

Author:

Kenna Daniel1ORCID,Graystock Peter1ORCID,Gill Richard J.1ORCID

Affiliation:

1. Georgina Mace Centre for the Living Planet Department of Life Sciences, Imperial College London Berkshire UK

Abstract

AbstractClimate change and agricultural intensification are exposing insect pollinators to temperature extremes and increasing pesticide usage. Yet, we lack good quantification of how temperature modulates the sublethal effects of pesticides on behaviours vital for fitness and pollination performance. Consequently, we are uncertain if warming decreases or increases the severity of different pesticide impacts, and whether separate behaviours vary in the direction of response. Quantifying these interactive effects is vital in forecasting pesticide risk across climate regions and informing pesticide application strategies and pollinator conservation. This multi‐stressor study investigated the responses of six functional behaviours of bumblebees when exposed to either a neonicotinoid (imidacloprid) or a sulfoximine (sulfoxaflor) across a standardised low, mid, and high temperature. We found the neonicotinoid had a significant effect on five of the six behaviours, with a greater effect at the lower temperature(s) when measuring responsiveness, the likelihood of movement, walking rate, and food consumption rate. In contrast, the neonicotinoid had a greater impact on flight distance at the higher temperature. Our findings show that different organismal functions can exhibit divergent thermal responses, with some pesticide‐affected behaviours showing greater impact as temperatures dropped, and others as temperatures rose. We must therefore account for environmental context when determining pesticide risk. Moreover, we found evidence of synergistic effects, with just a 3°C increase causing a sudden drop in flight performance, despite seeing no effect of pesticide at the two lower temperatures. Our findings highlight the importance of multi‐stressor studies to quantify threats to insects, which will help to improve dynamic evaluations of population tipping points and spatiotemporal risks to biodiversity across different climate regions.

Funder

Natural Environment Research Council

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3