Affiliation:
1. Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul Republic of Korea
2. Department of Food and Nutrition Wonkwang University Iksan Jeonbuk Republic of Korea
3. Center for Food Safety and Department of Food Science and Technology University of Georgia Griffin Georgia USA
Abstract
Abstract
Aim
This study was done to determine the effects of temperature, pH and sodium chloride (NaCl) on antimicrobial activity of magnesium oxide (MgO) nanoparticles (NPs) against E. coli O157:H7.
Methods and results
Culture conditions were established by varying the pH (5.0, 7.2 and 9.0), NaCl concentration (0.5, 2.0, 3.5 and 5.0%, w/v), and incubation temperatures (4, 12, 22 and 37°C). At each condition, the antimicrobial activities of MgO-NPs (0, 1, 2 and 4 mg/ml) against E. coli O157:H7 were measured. Four-way analysis of variance indicated interactions among all factors had a significant effect (p ≤ 0.05) on the antimicrobial activity of MgO-NPs. The concentration of MgO-NPs necessary to cause a 5-log reduction of E. coli O157:H7 under the most inhibitory conditions (37°C, pH 9.0, and 5.0% NaCl) was 0.50 mg/ml of MgO-NPs.
Conclusion
The antimicrobial activity of the MgO-NPs increased significantly (p ≤ 0.05) with increased temperature, pH and NaCl concentration in TSB.
Significance and impact of the study
The influence of intrinsic and extrinsic factors on antimicrobial activity of MgO-NPs we found will contribute to the development of microbial decontamination strategies using MgO in the food industry.
Funder
National Research Foundation of Korea
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,General Medicine,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献