Towards inclusivity in AI: A comparative study of cognitive engagement between marginalized female students and peers

Author:

Jiang Shiyan1ORCID,McClure Jeanne1ORCID,Tatar Cansu2ORCID,Bickel Franziska1ORCID,Rosé Carolyn P.3,Chao Jie4ORCID

Affiliation:

1. Department of Teacher Education and Learning Sciences North Caroline State University Raleigh North Carolina USA

2. Department of Educational Technology, Research and Assessment Northern Illinois University DeKalb Illinois USA

3. School of Computer Science Carnegie Mellon University Pittsburgh Pennsylvania USA

4. Concord Consortium Concord Massachusetts USA

Abstract

AbstractThis study addresses the need for inclusive AI education by focusing on marginalized female students who historically lack access to learning opportunities in computing. It applies the theoretical framework of intersectionality to understand how gender, race and ethnicity intersect to shape these students' learning experiences and outcomes. Specifically, this study investigated 27 high‐school students' cognitive engagement in machine learning practices. We conducted the Wilcoxon–Mann–Whitney test to explore differences in cognitive engagement between marginalized female students and their peers, employed comparative content analysis to delve into significant differences and analysed interview data thematically to gain deeper insights into students' machine learning model development processes. The findings indicated that, when engaging in machine learning practices requiring drawing diverse cultural perspectives, marginalized female students demonstrated significantly higher performance compared to their peers. In particular, marginalized female students exhibited strengths in holistic language analysis, paying attention to writers' intentions and recognizing cultural nuances in language. This study suggests that integrating language analysis and machine learning across subjects has the potential to empower marginalized female students and amplify their perspectives. Furthermore, it calls for a strengths‐based approach to reshape the narrative of underrepresentation and promote equitable participation in machine learning and AI. Practitioner notesWhat is already known about this topic Female students, particularly those from underrepresented groups such as African American and Latina students, often experience low levels of cognitive engagement in computing. Marginalized female students possess unique strengths that, when nurtured, have the potential to not only transform their own learning experiences but also contribute to the advancement of the computing field. It is critical to empower marginalized female students in K‐12 AI (ie, a subfield of computing) education, seeking to bridge the gender and racial disparity in AI. What this paper adds Marginalized female students outperformed their peers in responding to machine learning questions related to feature analysis and feature distribution interpretation. When responding to these questions, they demonstrated a holistic approach to analysing language by considering interactions between features and writers' intentions. They drew on knowledge about how language was used to convey meaning in different cultural contexts. Implications for practice and/or policy Educators should design learning environments that encourage students to draw upon their cultural backgrounds, linguistic insights and diverse experiences to enhance their engagement and performance in AI‐related activities. Educators should strategically integrate language analysis and machine learning across different subjects to create interdisciplinary learning experiences that support students' exploration of the interplay among language, culture and AI. Educational institutions and policy initiatives should adopt a strengths‐based approach that focuses on empowering marginalized female students by acknowledging their inherent abilities and diverse backgrounds.

Funder

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3