Adaptive cellular evolution or cellular system drift in hares

Author:

Palsson Arnar1ORCID,Steele Sarah Elizabeth1ORCID

Affiliation:

1. Institute of Life and Environmental Science University of Iceland Reykjavík Iceland

Abstract

Adaptations occur at many levels, for example, from DNA sequence of regulatory elements and cellular homeostatic systems to organismal physiology and behaviour (Mayr, 1997). Established adaptations are maintained by purifying and stabilizing selection. Students of animal diversity tend to focus on higher order traits, anatomy, physiology, organismal function and interactions. The core cellular and metabolic systems of metazoans evolved early in their history and are assumed to be rather similar between groups. The housekeeping functions and core metabolic functions of cells are generally considered relatively static, especially among closely related species. The extent to which evolution shapes core cellular metabolism and physiology in animals is largely unexplored. Ecological opportunities or strong positive selection can alter basal metabolic rate, activity levels and life‐history traits (e.g., life span, age of maturity, offspring number) and potentially lead to divergence in core cellular and metabolic trait systems (Norin & Metcalfe, 2019; Speakman, 2005). Furthermore, systems under stabilizing selection can also change. Developmental systems of related species may produce the same phenotype or structure, but experience drift that can alter connections and even lead to turnover of cogs in the system (True & Haag, 2001). Are the cellular functions of animals highly constrained, subject to cellular system drift or affected by positive selection? This was tackled by a new study by Kateryna Gaertner and colleagues in a From the Cover manuscript in this issue of Molecular Ecology (Gaertner et al., 2022), using fibroblasts from the closely related but ecologically distinct brown and mountain hares.

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empirical evidence for metabolic drift in plant and algal lipid biosynthesis pathways;Frontiers in Plant Science;2024-01-31

2. Editorial 2024;Molecular Ecology;2023-12-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3