Fibroblasts from long-lived bird species are resistant to multiple forms of stress

Author:

Harper James M.12,Wang Min12,Galecki Andrzej T.2,Ro Jennifer3,Williams Joseph B.3,Miller Richard A.124

Affiliation:

1. Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2200, USA

2. Geriatrics Center, University of Michigan, Ann Arbor, MI 48109-2200, USA

3. Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210-1293, USA

4. VA Medical Center, University of Michigan, Ann Arbor, MI 48109-2200, USA

Abstract

SUMMARY Evolutionary senescence theory postulates that aging results from the declining force of natural selection with increasing chronological age. A goal of comparative studies in the biology of aging is to identify genetic and biochemical mechanism(s) driving species-specific differences in the aging process that are the end product of life history trade-offs. We hypothesized that cells from long-lived bird species are more resistant to stress agents than are cells from short-lived species, and that cells from birds are more resistant to stress than are cells from relatively short-lived mammals of similar size. We tested primary fibroblast cultures from 35 species of free-living birds for their resistance to multiple forms of cellular stress and found that cell lines from longer-lived species were resistant to death caused by cadmium (R2=0.27, P=0.002), paraquat (R2=0.13, P=0.03), hydrogen peroxide (R2=0.09, P=0.07) and methyl methanesulfonate (R2=0.13, P=0.03), as well as to the metabolic inhibition seen in low-glucose medium (R2=0.37, P<0.01). They did not differ in their resistance to UV radiation, or to thapsigargin or tunicamycin, inducers of the unfolded protein response. These results were largely consistent even after accounting for the influence of body mass and phylogeny. Cell lines from longer-lived bird species also proliferate more rapidly than cells from short-lived birds, although there was no relationship between proliferation and stress resistance. Finally, avian fibroblasts were significantly more resistant than rodent fibroblasts to each of the tested stressors. These results support the idea that cellular resistance to injury may be an important contributor to the evolution of slow aging and long lifespan among bird species, and may contribute to the relatively long lifespan of birds compared with rodents of the same body size.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3