Developing a model semantic‐based image retrieval by combining KD‐Tree structure with ontology

Author:

Le Thanh Manh1,Dinh Nguyen Thi12,Van Thanh The3

Affiliation:

1. University of Sciences Hue University Hue Vietnam

2. HCMC University of Food Industry HoChiMinh City Vietnam

3. HCMC University of Education HoChiMinh City Vietnam

Abstract

AbstractThe paper proposes an alternative approach to improve the performance of image retrieval. In this work, a framework for image retrieval based on machine learning and semantic retrieval is proposed. In the preprocessing phase, the image is segmented objects by using Graph‐cut, and the feature vectors of objects presented in the image and their visual relationships are extracted using R‐CNN. The feature vectors, visual relationships, and their symbolic labels are stored in KD‐Tree data structures which can be used to predict the label of objects and visual relationships later. To facilitate semantic query, the images use the RDF data model and create an ontology for the symbolic labels annotated. For each query image, after extracting their feature vectors, the KD‐Tree is used to classify the objects and predict their relationship. After that, a SPARQL query is built to extract a set of similar images. The SPARQL query consists of triple statements describing the objects and their relationship which were previously predicted. The evaluation of the framework with the MS‐COCO dataset and Flickr showed that the precision achieved scores of 0.9218 and 0.9370, respectively.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Knowledge Graph and KD-Tree Random Forest for Image Retrieval;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3