Interferenceless coexistence of 6G networks and scientific instruments in the Ka‐band

Author:

Bordel Borja1ORCID,Alcarria Ramón1ORCID,Robles Tomás1ORCID

Affiliation:

1. Department of Information Systems Universidad Politécnica de Madrid Madrid Spain

Abstract

Abstract6G networks are envisioned to provide an extremely high quality‐of‐service (QoS). Then, future 6G network must operate in the Ka‐band, where more bandwidth and radio channels are available, and noise and interferences are lower. But even in this context, 6G base stations must adjust the transmission power to ensure the signal‐to‐noise ratio is good enough to enable the expected QoS. However, 6G networks are not the only infrastructure operating in that band. Actually, many scientific instruments are also working on those frequencies. Considering that 6G networks will be transmitting a relevant power level, they can interfere very easily with these scientific instruments. Therefore, in this paper we propose a new solution to enable the interferenceless coexistence between 6G networks and scientific instruments. This solution includes a three‐dimensional model to analyse future positions of user devices. Using this information and an interference model, we design a decision model to adapt the transmitted power, so the QoS achieves the expected level. Besides, when the transmitted power is high enough to interfere with close scientific instruments, a scheduling algorithm based on swarm intelligence is triggered. This algorithm calculates the optimum distribution of time slots and radio channels, so the scientific instruments can operate, and the 6G networks can still provide the required QoS. An experimental validation is provided to analyse the performance of the proposed solution. Results show a complete coexistence may be achieved with an interference level of −26 dBm and a QoS above 95% of the expected level.

Funder

Comunidad de Madrid

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3