Efficient and choreographed quality-of- service management in dense 6G verticals with high-speed mobility requirements

Author:

Bordel Borja1,Alcarria Ramón2,Chung Joaquin3,Kettimuthu Rajkumar3

Affiliation:

1. Department of Informatic Systems, Universidad Politécnica de Madrid, Spain

2. Department of Topographic Engineering and Cartography, Universidad Politécnica de Madrid, Spain

3. Argonne National Laboratory, Lemont, IL, USA

Abstract

Future 6G networks are envisioned to support very heterogeneous and extreme applications (known as verticals). Some examples are further-enhanced mobile broadband communications, where bitrates could go above one terabit per second, or extremely reliable and low-latency communications, whose end-to-end delay must be below one hundred microseconds. To achieve that ultra-high Quality-of-Service, 6G networks are commonly provided with redundant resources and intelligent management mechanisms to ensure that all devices get the expected performance. But this approach is not feasible or scalable for all verticals. Specifically, in 6G scenarios, mobile devices are expected to have speeds greater than 500 kilometers per hour, and device density will exceed ten million devices per square kilometer. In those verticals, resources cannot be redundant as, because of such a huge number of devices, Quality-of-Service requirements are pushing the effective performance of technologies at physical level. And, on the other hand, high-speed mobility prevents intelligent mechanisms to be useful, as devices move around and evolve faster than the usual convergence time of those intelligent solutions. New technologies are needed to fill this unexplored gap. Therefore, in this paper we propose a choreographed Quality-of-Service management solution, where 6G base stations predict the evolution of verticals at real-time, and run a lightweight distributed optimization algorithm in advance, so they can manage the resource consumption and ensure all devices get the required Quality-of-Service. Prediction mechanism includes mobility models (Markov, Bayesian, etc.) and models for time-variant communication channels. Besides, a traffic prediction solution is also considered to explore the achieved Quality-of-Service in advance. The optimization algorithm calculates an efficient resource distribution according to the predicted future vertical situation, so devices achieve the expected Quality-of-Service according to the proposed traffic models. An experimental validation based on simulation tools is also provided. Results show that the proposed approach reduces up to 12% of the network resource consumption for a given Quality-of-Service.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3