Nanoplastics modulate the outcome of a zooplankton–microparasite interaction

Author:

Mavrianos Stylianos12,Manzi Florent13,Agha Ramsy1,Azoubib Noemi13,Schampera Charlotte1,Wolinska Justyna13

Affiliation:

1. Department of Evolutionary and Integrative Ecology Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany

2. Department of Biological Sciences University of Cyprus Nicosia Cyprus

3. Department of Biology, Chemistry, Pharmacy, Institute of Biology Freie Universität Berlin Berlin Germany

Abstract

Abstract The accumulation and degradation of plastic waste in freshwater bodies poses a threat to aquatic biota. Microplastics (<5 mm) can transfer upwards in food chains and have been shown to induce deleterious effects on important players of freshwater ecosystems, including zooplankton. A smaller category of microplastic particles, the so‐called nanoplastics (≤100 nm) raise special concern due to their ability to act at sub‐cellular and molecular levels. Despite growing knowledge of their effects on physiological traits of individual species, the way they affect interactions between species remains largely unexplored. We studied the effects of nanoplastics on host–parasite interactions by exposing the zooplankton host Daphnia galeata × longispina to the parasitic yeast Metschnikowia bicuspidata without plastic and at two different concentrations of polystyrene nanoplastic beads (100 nm): 5 and 20 mg/L. Both concentrations of nanoplastics increased the proportion of infected hosts; at the higher concentration, however, elevated rates of host mortality and impaired spore production cancelled out the parasite's advantage. Consequently, parasite success was greatest at the lower level of nanoplastic exposure. Infection by Metschnikowia greatly reduced host lifespan and total offspring production (regardless of nanoplastic exposure), but only decreased the proportion of successfully reproducing hosts when Daphnia were additionally exposed to nanoplastics. Nanoplastics alone did not cause such a reduction in host fitness parameters: instead, the lower concentration increased lifetime offspring production by about 50%, suggesting hormesis. Given that parasitism is a ubiquitous lifestyle in nature and that parasites can play important roles in the shaping and functioning of ecosystems, these results highlight the importance of including interactions between host and parasite species as alternative ecotoxicological endpoints to better assess the ecological consequences of plastic pollution.

Publisher

Wiley

Subject

Aquatic Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3