Progress in Research on the Bioavailability and Toxicity of Nanoplastics to Freshwater Plankton

Author:

Slaveykova Vera I.1ORCID,Marelja Matea1

Affiliation:

1. Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland

Abstract

The present review critically examines the advancements in the past 5 years regarding research on the bioavailability and toxicity of the nanoplastics (NPLs) to freshwater plankton. We discuss the recent progress in the understanding of adsorption, absorption, trophic transfer, and biological effects in phyto- and zooplankton induced by NPLs exposure. The influence of plankton on NPLs’ bioavailability via the excretion of biomolecules and formation of eco-corona is also examined. Despite important research developments, there are still considerable knowledge gaps with respect to NPLs’ bioavailability and trophic transfer by plankton as well as a potential adverse effect in natural aquatic systems. As plankton play a critical role in primary production, nutrient cycling, and food web structure, understanding the interactions between NPLs and plankton is essential in assessing the potential implications of NPLs pollution for aquatic ecosystem biodiversity and services.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3