Effect of sodium carbonate on the properties of seventy percent of Tartary buckwheat composite flour‐based doughs and noodles and the underlying mechanism

Author:

Qi Yajing1,Cheng Jiahao1,Chen Yu1,Xu Bin1ORCID

Affiliation:

1. School of Food and Biological Engineering Jiangsu University Zhenjiang China

Abstract

AbstractThe impact of Na2CO3 on the properties of doughs and noodles containing 70% Tartary buckwheat flour was investigated. Low‐field 1H nuclear magnetic resonance showed the mobility of water in the doughs significantly declined with the addition content of alkali from 0% to 0.9%. Na2CO3 promoted the transformation from free sulfhydryl groups to disulfide bonds in doughs because the sulfhydryl groups in cysteine preferred to form thiolate anion and then oxidate under alkaline conditions. As for non‐covalent chemical interactions, a significant increase of hydrogen bonds and a decrease of hydrophobic interactions were observed after Na2CO3 addition. Quantitative analysis of microstructure showed that more uniform and denser gluten networks with higher branching rate and shorter average protein length and width formed in the doughs with 0.3%–0.6% of Na2CO3. The aggregated glutenin macropolymer and enhanced protein structure led to significantly stronger tensile of Tartary buckwheat dough sheets, which could meet the demand of continuous processing in the factory. Dough with alkali had higher swelling power and pasting viscosities, contributing to higher water absorption, and improved textural attributes of cooked noodles. This study demonstrated the possibility of adding Na2CO3 at a moderate level for promoting the sheeting, cooking, and eating properties of high Tartary buckwheat flour composite noodles.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Pharmaceutical Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3