Affiliation:
1. School of Food and Biological Engineering Jiangsu University Zhenjiang China
Abstract
AbstractThe impact of Na2CO3 on the properties of doughs and noodles containing 70% Tartary buckwheat flour was investigated. Low‐field 1H nuclear magnetic resonance showed the mobility of water in the doughs significantly declined with the addition content of alkali from 0% to 0.9%. Na2CO3 promoted the transformation from free sulfhydryl groups to disulfide bonds in doughs because the sulfhydryl groups in cysteine preferred to form thiolate anion and then oxidate under alkaline conditions. As for non‐covalent chemical interactions, a significant increase of hydrogen bonds and a decrease of hydrophobic interactions were observed after Na2CO3 addition. Quantitative analysis of microstructure showed that more uniform and denser gluten networks with higher branching rate and shorter average protein length and width formed in the doughs with 0.3%–0.6% of Na2CO3. The aggregated glutenin macropolymer and enhanced protein structure led to significantly stronger tensile of Tartary buckwheat dough sheets, which could meet the demand of continuous processing in the factory. Dough with alkali had higher swelling power and pasting viscosities, contributing to higher water absorption, and improved textural attributes of cooked noodles. This study demonstrated the possibility of adding Na2CO3 at a moderate level for promoting the sheeting, cooking, and eating properties of high Tartary buckwheat flour composite noodles.
Funder
Natural Science Foundation of Jiangsu Province
Subject
Pharmaceutical Science,Food Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献