The role of fructose at a range of concentration on the texture and microstructure of freeze‐dried pectin–cellulose matrix cryogel

Author:

Du Qianqian12ORCID,Bi Jinfeng1ORCID,Yi Jianyong1ORCID,Zhao Yuanyuan1,Feng Shuhan1,Ma Youchuan1

Affiliation:

1. Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China

2. School of Food Science and Technology Dalian Polytechnic University Dalian China

Abstract

AbstractFreeze‐dried (FD) fruit and vegetable materials with a large amount of sugar are unstable. With the aim to understand the structure formation of FD products, the effects of fructose content on the texture and microstructure of FD matrix were investigated by using pectin–cellulose cryogel model. Cryogels containing fructose of 0–40% were produced using freeze‐drying at three different primary drying temperatures of −40, −20, and 20°C. The resultant cryogels were characterized by texture profile analyzer, scanning electron microscope, and μCT. Results indicated that at drying temperature of −40°C, increasing fructose concentration promoted the hardness of the cryogels, and cryogels of 16% fructose obtained maximum hardness. Excessive fructose (≥20%) weakened the described hardness, while exhibiting stronger springiness and resilience. The microstructure showed that dense pores and increased wall thickness due to fructose aggregation were critical factors responsible for increased hardness. The porous structure as well as relatively large pore size were necessary for crispness, in addition, rigid pore wall with certain strength were also required. At the drying temperature of 20°C, large hetero‐cavities dominated the microstructure of cryogels with 30% and 40% fructose, caused by melting inside during FD process. In this situation, lower Tm (−15.48 and −20.37°C) were responsible for cryogels’ melting In conclusion, if possible, regulating fructose content and state may enable the precision texture design of FD fruit and vegetable foods.

Funder

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences

Publisher

Wiley

Subject

Pharmaceutical Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3