Rapamycin has suppressive and stimulatory effects on human plasmacytoid dendritic cell functions

Author:

Boor P P C1,Metselaar H J1,Mancham S1,van der Laan L J W2,Kwekkeboom J1

Affiliation:

1. Department of Gastroenterology and Hepatology, Erasmus MC – University Medical Centre, Rotterdam, The Netherlands

2. Department of Surgery, Erasmus MC – University Medical Centre, Rotterdam, The Netherlands

Abstract

Summary Plasmacytoid dendritic cells (PDC) are involved in innate immunity by interferon (IFN)-α production, and in adaptive immunity by stimulating T cells and inducing generation of regulatory T cells (Treg). In this study we studied the effects of mammalian target of rapamycin (mTOR) inhibition by rapamycin, a commonly used immunosuppressive and anti-cancer drug, on innate and adaptive immune functions of human PDC. A clinically relevant concentration of rapamycin inhibited Toll-like receptor (TLR)-7-induced IFN-α secretion potently (−64%) but TLR-9-induced IFN-α secretion only slightly (−20%), while the same concentration suppressed proinflammatory cytokine production by TLR-7-activated and TLR-9-activated PDC with similar efficacy. Rapamycin inhibited the ability of both TLR-7-activated and TLR-9-activated PDC to stimulate production of IFN-γ and interleukin (IL)-10 by allogeneic T cells. Surprisingly, mTOR-inhibition enhanced the capacity of TLR-7-activated PDC to stimulate naive and memory T helper cell proliferation, which was caused by rapamycin-induced up-regulation of CD80 expression on PDC. Finally, rapamycin treatment of TLR-7-activated PDC enhanced their capacity to induce CD4+forkhead box protein 3 (FoxP3)+ regulatory T cells, but did not affect the generation of suppressive CD8+CD38+lymphocyte activation gene (LAG)-3+ Treg. In general, rapamycin inhibits innate and adaptive immune functions of TLR-stimulated human PDC, but enhances the ability of TLR-7-stimulated PDC to stimulate CD4+ T cell proliferation and induce CD4+FoxP3+ regulatory T cell generation.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3