Network-based Multi-omics Disease–Drug Associations Reveal Drug Repurposing Candidates for Covid-19 Disease Phases

Author:

Agamah Francis E.1ORCID,Ederveen Thomas H. A.1ORCID,Skelton Michelle1ORCID,Martin Darren P.1ORCID,Chimusa Emile R.2ORCID,‘t Hoen Peter A. C.3ORCID

Affiliation:

1. Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

2. Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear, NE1 8ST, UK

3. Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands

Abstract

Background The development and rollout of vaccines and the use of various drugs have contributed to controlling the coronavirus disease 2019 (Covid-19) pandemic. Nevertheless, challenges such as the inequitable distribution of vaccines, the influence of emerging viral lineages and immunoevasive variants on vaccine efficacy, and the inadequate immune defense in subgroups of the population continue to motivate the development of new drugs to combat the disease. Aim In this study, we sought to identify, prioritize, and characterize drug repurposing candidates appropriate for treating mild, moderate, or severe Covid-19 using a network-based integrative approach that systematically integrates drug-related data and multi-omics datasets. Methods We leveraged drug data and multi-omics data and used a random walk with restart algorithm to explore an integrated knowledge graph comprising three subgraphs: (i) a Covid-19 knowledge graph, (ii) a drug repurposing knowledge graph, and (iii) a Covid-19 disease state-specific omics graph. Results We prioritized 20 US Food and Drug Administration-approved agents as potential candidate drugs for mild, moderate, and severe Covid-19 disease phases. Specifically, drugs that could stimulate immune cell recruitment and activation including histamine, curcumin, and paclitaxel have potential utility in mild disease states to mitigate disease progression. Drugs like omacetaxine, crizotinib, and vorinostat that exhibit antiviral properties and have the potential to inhibit viral replication can be considered for mild to moderate Covid-19 disease states. Also, given the association between antioxidant deficiency and high inflammatory factors that trigger cytokine storms, antioxidants like glutathione can be considered for moderate disease states. Drugs that exhibit potent anti-inflammatory effects like (i) anti-inflammatory drugs (sarilumab and tocilizumab), (ii) corticosteroids (dexamethasone and hydrocortisone), and (iii) immunosuppressives (sirolimus and cyclosporine) are potential candidates for moderate to severe disease states that trigger a hyperinflammatory cascade of Covid-19. Conclusion Our study demonstrates that the multi-omics data-driven integrative analysis within the drug data enables prioritizing drug candidates for Covid-19 disease phases, offering a comprehensive basis for therapeutic strategies that can be brought to market quickly given their established safety profiles. Importantly, the multi-omics data-driven integrative analysis within the drug data approach implemented here can be used to prioritize drug repurposing candidates appropriate for other diseases.

Publisher

ScienceOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3