Study on the stability of four flavonoid glycoside components in Myrica Rubra pomace and their mechanism of in vitro hypoglycaemic activity

Author:

Tian Siyi1ORCID,Chang Guoli1,Xiang Yannan1,Cai Chenggang1,Luo Xinyu1,Zhu Ruiyu1,Yang Hailong2,Gao Haiyan3

Affiliation:

1. School of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product Zhejiang University of Science and Technology Hangzhou 310023 China

2. College of Life and Environmental Science Wenzhou University Wenzhou 325035 China

3. Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou 310023 China

Abstract

SummaryIn order to investigate the hypoglycaemic mechanism and potential applications of four hypoglycaemic flavonoid glycosides, namely myricitrin, Cyanidin‐3‐O‐glucoside (C3G), hyperoside and quercitrin in Myrica rubra pomace, the stability of these four flavonoid glycosides and their binding mechanisms were studied using molecular docking. The results demonstrated that pH value affects on the stability of these four components in M. rubra pomace. C3G exhibited the most significant inhibitory effect on α‐glucosidase at pH 5, with myricitrin, hyperoside and quercitrin showing the highest inhibitory effect at pH 7. Moreover, an increase in temperature and storage time reduced the inhibitory effect of these four glycosidic components on α‐glucosidase. Molecular docking analysis revealed that myricitrin formed hydrogen bonds with the active site residues of α‐glucosidase, namely Phe550, Ile552, Asp555, Ser574 and Arg576, and also engaged in hydrophobic interactions with Lys551. Hyperoside formed hydrogen bonds with α‐glucosidase, formed hydrophobic interactions with Lys50 and exhibited π‐cation interaction with Lys53. Quercitrin formed hydrogen bonds with α‐glucosidase, formed hydrophobic interactions with Lys500 and established salt bridges with Lys50. C3G formed hydrogen bonds and hydrophobic interactions with α‐glucosidase and showed π‐π interactions with Phe301. These findings will provide valuable insights for the application of these four chemicals.

Funder

Key Research and Development Program of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3