Development and structural characterisation of gelatin‐based sustainable food packaging from turkey (Meleagris gallopavo) skin by‐product

Author:

Ozcan Yilmaz1,Kurt Abdullah2ORCID,Yildirim‐Yalcin Meral3,Toker Omer Said4ORCID

Affiliation:

1. Department of Food Engineering, Faculty of Engineering Kirklareli University Kirklareli 39100 Turkey

2. Department of Food Engineering, Aksehir Faculty of Engineering and Architecture Selcuk University Konya 42550 Turkey

3. Department of Food Engineering Engineering Faculty Istanbul Aydin University Istanbul 34295 Turkey

4. Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering Yildiz Technical University Istanbul 34000 Turkey

Abstract

SummaryIn view of the environmental problems resulting from plastic‐based packaging, gelatin film production from alternative, sustainable sources are extremely important. The objective of this study was to utilise a major source of collagen derived from poultry waste to produce and characterise turkey skin gelatin films (TGF). TGFs were produced at different glycerol concentrations (20%, 30% and 40%) via solvent casting technique. TGFs characteristics were also compared with the bovine gelatin films (BGF). The thermal structural development of TGF solutions to form a film network was not affected by the glycerol content in the temperature sweep test. This property was determined earlier and at higher temperatures in TGF (22 °C–23 °C) than in BGF (19 °C). As the glycerol ratio increased, the moisture content increased from 14.80% to 22.46%, while the thickness (36 μm) and density (1.134–1.247 g cm−3) of TGFs remained constant due to the compact structures. The water vapour transmission rates of TGFs and BGF were similar (P >0.05), ranging from 0.48 to 0.53 g mm m−2 h−1 kPa−1. Lower solubility was found for TGF20 (44.78%) and TGF30 (63.59%) films compared to BGF30 (63.59%). TGF20 exhibited the highest tensile strength and lowest elongation at break values. TGF40 and BGF30 demonstrated the highest flexibility and extensibility (P >0.05). In XRD analysis, TG40 demonstrated a less amorphous film structure compared to BG30, since the increased interaction due to glycerol provided a more ordered polymeric structure. TG20 and TG30 showed lower decomposition rates and higher residue levels, indicating their higher thermal stability. Thus, gelatin films based on turkey skin could be the alternative natural biodegradable films with suitable glycerol content for desired mechanical, barrier and thermal properties.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3