GATA2 heterozygosity causes an epigenetic feedback mechanism resulting in myeloid and erythroid dysplasia

Author:

Gioacchino Emanuele1,Zhang Wei1,Koyunlar Cansu1,Zink Joke1,de Looper Hans12,Gussinklo Kirsten J.1,Hoogenboezem Remco1,Bosch Dennis1,Bindels Eric1,Touw Ivo P.1ORCID,de Pater Emma12ORCID

Affiliation:

1. Department of Hematology Erasmus MC Cancer Institute Rotterdam The Netherlands

2. Cancer Genome Editing Center Erasmus MC Cancer Institute Rotterdam The Netherlands

Abstract

SummaryThe transcription factor GATA2 has a pivotal role in haematopoiesis. Heterozygous germline GATA2 mutations result in a syndrome characterized by immunodeficiency, bone marrow failure and predispositions to myelodysplastic syndrome (MDS) and acute myeloid leukaemia. Clinical symptoms in these patients are diverse and mechanisms driving GATA2‐related phenotypes are largely unknown. To explore the impact of GATA2 haploinsufficiency on haematopoiesis, we generated a zebrafish model carrying a heterozygous mutation of gata2b (gata2b+/−), an orthologue of GATA2. Morphological analysis revealed myeloid and erythroid dysplasia in gata2b+/− kidney marrow. Because Gata2b could affect both transcription and chromatin accessibility during lineage differentiation, this was assessed by single‐cell (sc) RNA‐seq and single‐nucleus (sn) ATAC‐seq. Sn‐ATAC‐seq showed that the co‐accessibility between the transcription start site (TSS) and a −3.5–4.1 kb putative enhancer was more robust in gata2b+/− zebrafish HSPCs compared to wild type, increasing gata2b expression and resulting in higher genome‐wide Gata2b motif use in HSPCs. As a result of increased accessibility of the gata2b locus, gata2b+/− chromatin was also more accessible during lineage differentiation. scRNA‐seq data revealed myeloid differentiation defects, that is, impaired cell cycle progression, reduced expression of cebpa and cebpb and increased signatures of ribosome biogenesis. These data also revealed a differentiation delay in erythroid progenitors, aberrant proliferative signatures and down‐regulation of Gata1a, a master regulator of erythropoiesis, which worsened with age. These findings suggest that cell‐intrinsic compensatory mechanisms, needed to obtain normal levels of Gata2b in heterozygous HSPCs to maintain their integrity, result in aberrant lineage differentiation, thereby representing a critical step in the predisposition to MDS.

Funder

KWF Kankerbestrijding

European Hematology Association

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GATA2 deficiency syndrome: A compensatory mechanism gone awry?;British Journal of Haematology;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3