Resolving the influence of lignin on soil organic matter decomposition with mechanistic models and continental‐scale data

Author:

Yi Bo1ORCID,Lu Chaoqun1ORCID,Huang Wenjuan1ORCID,Yu Wenjuan1ORCID,Yang Jihoon2ORCID,Howe Adina2ORCID,Weintraub‐Leff Samantha R.3ORCID,Hall Steven J.14ORCID

Affiliation:

1. Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames Iowa USA

2. Department of Agricultural and Biosystems Engineering Iowa State University Ames Iowa USA

3. National Ecological Observatory Network, Battelle Boulder Colorado USA

4. Department of Plant and Agroecosystem Sciences University of Wisconsin‐Madison Madison Wisconsin USA

Abstract

AbstractConfidence in model estimates of soil CO2 flux depends on assumptions regarding fundamental mechanisms that control the decomposition of litter and soil organic carbon (SOC). Multiple hypotheses have been proposed to explain the role of lignin, an abundant and complex biopolymer that may limit decomposition. We tested competing mechanisms using data‐model fusion with modified versions of the CN‐SIM model and a 571‐day laboratory incubation dataset where decomposition of litter, lignin, and SOC was measured across 80 soil samples from the National Ecological Observatory Network. We found that lignin decomposition consistently decreased over time in 65 samples, whereas in the other 15 samples, lignin decomposition subsequently increased. These “lagged‐peak” samples can be predicted by low soil pH, high extractable Mn, and fungal community composition as measured by ITS PC2 (the second principal component of an ordination of fungal ITS amplicon sequences). The highest‐performing model incorporated soil biogeochemical factors and daily dynamics of substrate availability (labile bulk litter:lignin) that jointly represented two hypotheses (C substrate limitation and co‐metabolism) previously thought to influence lignin decomposition. In contrast, models representing either hypothesis alone were biased and underestimated cumulative decomposition. Our findings reconcile competing hypotheses of lignin decomposition and suggest the need to precisely represent the role of lignin and consider soil metal and fungal characteristics to accurately estimate decomposition in Earth‐system models.

Funder

National Science Foundation

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3