Multi‐omics reveal the gut microbiota‐mediated severe foraging environment adaption of small wild ruminants in the Three‐River‐Source National Park, China

Author:

LIU Hongjin123,ZHAO Xinquan4,XU Shixiao123,ZHAO Liang123,HAN Xueping5,XU Xianli1236,ZHAO Na123,HU Linyong123,LUO Chongliang123,WANG Xungang123,ZHANG Qian123,GUO Tongqing1236

Affiliation:

1. Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining Qinghai China

2. Institute of Sanjiangyuan National Park Chinese Academy of Sciences Xining China

3. Sanjiangyuan Grassland Ecosystem National Observation and Research Station Xining China

4. State Key Laboratory of Plateau Ecology and Agriculture Qinghai University Xining China

5. Technology Extension Service of Animal Husbandry of Qinghai Xining China

6. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractThe Tibetan antelope (Pantholops hodgsonii), blue sheep (Pseudois nayaur), and Tibetan sheep (Ovis aries) are the dominant small ruminants in the Three‐River‐Source National Park (TRSNP). However, knowledge about the association between gut microbiota and host adaptability remains poorly understood. Herein, multi‐omics sequencing approaches were employed to investigate the gut microbiota‐mediated forage adaption in these ruminants. The results revealed that although wild ruminants (WR) of P. hodgsoni and P. nayaur were faced with severe foraging environments with significantly low vegetation coverage and nutrition, the apparent forage digestibility of dry matter, crude protein, and acid detergent fiber was significantly higher than that of O. aries. The 16s rRNA sequencing showed that the gut microbiota in WR underwent convergent evolution, and alpha diversity in these two groups was significantly higher than that in O. aries. Moreover, indicator species, including Bacteroidetes and Firmicutes, exhibited positive relationships with apparent forage digestibility, and their relative abundances were enriched in the gut of WR. Enterotype analysis further revealed that enterotype 1 belonged to WR, and the abundance of fatty acid synthesis metabolic pathway‐related enzyme genes was significantly higher than enterotype 2, represented by O. aries. Besides, the metagenomic analysis identified 14 pathogenic bacterial species, among which 10 potentially pathogenic bacteria were significantly enriched in the gut microbiota of O. aries. Furthermore, the cellulolytic strains and genes encoding cellulase and hemicellulase were significantly enriched in WR. In conclusion, our results provide new evidence of gut microbiota to facilitate wildlife adaption in severe foraging environments of the TRSNP, China.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3