Deterministic processes dominate microbial community assembly in artificially bred Schizothorax wangchiachii juveniles after being released into wild

Author:

XU Liangliang12,ZHANG Baowen12,LIU Fenglin12,WANG Zesong12,GAO Wenxue12,GAN Weixiong3,CHEN Hanxi12,SONG Zhaobin12

Affiliation:

1. Key Laboratory of Bio‐Resources and Eco‐Environment of Ministry of Education College of Life Sciences Sichuan University Chengdu China

2. Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences Sichuan University Chengdu China

3. Yalong River Hydropower Development Company, Ltd. Chengdu China

Abstract

AbstractFish artificial breeding and release is an important method to restore wild populations of endemic fish species around the world. Schizothorax wangchiachii (SW) is an endemic fish in the upper Yangtze River and is one of the most important species for the artificial breeding and release program implemented in the Yalong River drainage system in China. It is unclear how artificially bred SW adapts to the changeable wild environment post‐release, after being in a controlled and very different artificial environment. Thus, the gut samples were collected and analyzed for food composition and microbial 16S rRNA in artificially bred SW juveniles at day 0 (before release), 5, 10, 15, 20, 25, and 30 after release to the lower reaches of the Yalong River. The results indicated that SW began to ingest periphytic algae from the natural habitat before day 5, and this feeding habit is gradually stabilized at day 15. Prior to release, Fusobacteria are the dominant bacteria in the gut microbiota of SW, while Proteobacteria and Cyanobacteria generally are the dominant bacteria after release. The results of microbial assembly mechanisms illustrated that deterministic processes played a more prominent role than stochastic processes in the gut microbial community of artificially bred SW juveniles after releasing into the wild. Overall, the present study integrates the macroscopic and microscopic methods to provide an insight into the food and gut microbial reorganization in the released SW. This study will be an important research direction to explore the ecological adaptability of artificially bred fish after releasing into the wild.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Animal Science and Zoology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3