Anthropogenic forests simplify seed‐ but not pollen‐dispersal networks

Author:

DA SILVA Luis P.12ORCID,COUTINHO António Pereira3,RAMOS Jaime A.4,HELENO Ruben H.3

Affiliation:

1. CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado Universidade do Porto Vairão Portugal

2. BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO Vairão Portugal

3. CFE—Centre for Functional Ecology, Department of Life Sciences University of Coimbra Coimbra Portugal

4. MARE—Marine and Environmental Sciences Centre, Department of Life Sciences University of Coimbra Coimbra Portugal

Abstract

AbstractNatural native forests are rapidly being replaced by anthropogenic forests often with a strong presence of invasive alien plant species. Eucalypt species are widely planted worldwide, with Eucalyptus globulus plantations being particularly expressive in Portugal. Poor forestry practices often lead to the associated expansion of invasive species, such as Acacia dealbata. However, we still know relatively little about the functioning of anthropogenic forests, such as seed and pollen dispersal services. Here, we compared bird abundance and richness and the seed and pollen dispersal networks in both forest types. Anthropogenic forests presented lower bird abundance, and smaller, more simplified, and more random (abundance‐based) seed dispersal services than those of natural forests. Interestingly, the pollen dispersal network was more similar than the seed dispersal network for both forest types and dominated by opportunistic and neutral processes, given the absence of specialized nectarivorous. The proportion of birds transporting seeds decreased, while those carrying pollen significantly increased in the anthropogenic forest compared to the native forest. Our work highlights the impact of anthropogenic forests on bird abundance, with consequences for seed dispersal services and forest regeneration.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3