Affiliation:
1. School of Biological Science and Technology University of Jinan Jinan China
2. National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural University Wuhan China
Abstract
AbstractIn plant, APETALA2/ethylene‐responsive factor (AP2/ERF)‐domain transcription factors are important in regulating abiotic stress tolerance. In this study, ZmEREB57 encoding a AP2/ERF transcription factor was identified and its function was investigated in maize. ZmEREB57 is a nuclear protein with transactivation activity induced by several abiotic stress types. Furthermore, two CRISPR/Cas9 knockout lines of ZmEREB57 showed enhanced sensitivity to saline conditions, whereas the overexpression of ZmEREB57 increased salt tolerance in maize and Arabidopsis. DNA affinity purification sequencing (DAP‐Seq) analysis revealed that ZmEREB57 notably regulates target genes by binding to promoters containing an O‐box‐like motif (CCGGCC). ZmEREB57 directly binds to the promoter of ZmAOC2 involved in the synthesis of 12‐oxo‐phytodienoic acid (OPDA) and jasmonic acid (JA). Transcriptome analysis revealed that several genes involved in regulating stress and redox homeostasis showed differential expression patterns in OPDA‐ and JA‐treated maize seedlings exposed to salt stress compared to those treated with salt stress alone. Analysis of mutants deficient in the biosynthesis of OPDA and JA revealed that OPDA functions as a signalling molecule in the salt response. Our results indicate that ZmEREB57 involves in salt tolerance by regulating OPDA and JA signalling and confirm early observations that OPDA signalling functions independently of JA signalling.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献