Comparison of the Performance of Statistical Models in Forecasting Monthly Total Dissolved Solids in the Rio Grande1
Author:
Publisher
Wiley
Subject
Earth-Surface Processes,Water Science and Technology,Ecology
Link
http://onlinelibrary.wiley.com/wol1/doi/10.1111/j.1752-1688.2011.00587.x/fullpdf
Reference35 articles.
1. Infilling Missing Daily Evapotranspiration Data Using Neural Networks;Abudu;Journal of Irrigation and Drainage Engineering,2010
2. Forecasting Monthly Streamflow of Spring-Summer Runoff Season in Rio Grande Headwaters Basin Using Stochastic Hybrid Modeling Approach;Abudu;Journal of Hydrologic Engineering,2011
3. Performance of Stochastic Approaches for Forecasting River Water Quality;Ahmad;Water Research,2001
4. A New Look at Statistical Model Identification;Akaike;IEEE Transactions on Automatic Control,1974
5. Seasonal and Long-Term Variations in Water Quality of the Skeena River at Usk, British Columbia;Bhangu;Water Research,1997
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimization of State of the Art Fuzzy-Based Machine Learning Techniques for Total Dissolved Solids Prediction;Sustainability;2023-04-21
2. Evaluate River Water Salinity in a Semi‐Arid Agricultural Watershed by Coupling Ensemble Machine Learning Technique with SWAT Model;JAWRA Journal of the American Water Resources Association;2021-10-31
3. Lactation milk yield prediction in primiparous cows on a farm using the seasonal auto-regressive integrated moving average model, nonlinear autoregressive exogenous artificial neural networks and Wood’s model;Animal Bioscience;2021-04-01
4. Comparison of Box-Jenkin time series and radial basis function for sodium adsorption rate forecasting; a case study Aras, Sefidrud, Karun, and Mond Rivers;DESALINATION AND WATER TREATMENT;2021
5. An integrated machine learning, noise suppression, and population-based algorithm to improve total dissolved solids prediction;Engineering Applications of Computational Fluid Mechanics;2021-01-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3