Optimization of State of the Art Fuzzy-Based Machine Learning Techniques for Total Dissolved Solids Prediction

Author:

Hijji Mohammad1,Chen Tzu-Chia2ORCID,Ayaz Muhammad3,Abosinnee Ali S.45ORCID,Muda Iskandar6ORCID,Razoumny Yury7ORCID,Hatamiafkoueieh Javad7ORCID

Affiliation:

1. Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia

2. College of Management and Design, Ming Chi University of Technology, New Taipei City 243303, Taiwan

3. Sensor Networks and Cellular Systems (SNCS) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia

4. Quality Assurance Department, Altoosi University College, Najaf, Iraq

5. Quality Assurance Department, The Islamic University, Najaf, Iraq

6. Department of Doctoral Program, Faculty Economic and Business, Universitas Sumatera Utara, Medan 20222, Indonesia

7. Department of Mechanics and Control Processes, Academy of Engineering, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 117198, Russia

Abstract

Total dissolved solid prediction is an important factor which can support the early warning of water pollution, especially in the areas exposed to a mixture of pollutants. In this study, a new fuzzy-based intelligent system was developed, due to the uncertainty of the TDS time series data, by integrating optimization algorithms. Monthly-timescale water quality parameters data from nearly four decades (1974–2016), recorded over two gaging stations in coastal Iran, were used for the analysis. For model implementation, the current research aims to model the TDS parameter in a river system by using relevant biochemical parameters such as Ca, Mg, Na, and HCO3. To produce more compact networks along with the model’s generalization, a hybrid model which integrates a fuzzy-based intelligent system with the grasshopper optimization algorithm, NF-GMDH-GOA, is proposed for the prediction of the monthly TDS, and the prediction results are compared with five standalone and hybrid machine learning techniques. Results show that the proposed integrated NF-GMDH-GOA was able to provide an algorithmically informed simulation (NSE = 0.970 for Rig-Cheshmeh and NSE = 0.94 Soleyman Tangeh) of the dynamics of TDS records comparable to the artificial neural network, extreme learning machine, adaptive neuro fuzzy inference system, GMDH, and NF-GMDH-PSO models. According to the results of sensitivity analysis, Sodium in natural bodies of water with maximum value of error (RMSE = 56.4) had the highest influence on the TDS prediction for both stations, and Mg with RMSE = 43.251 stood second. The results of the Wilcoxon signed rank tests also indicated that the model’s prediction means were different, as the p value calculated for the models was less than the standard significance level (α=0.05).

Funder

RUDN University Scientific Projects Grant System

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3