Simultaneous suppression of lignin, tricin and wall‐bound phenolic biosynthesis via the expression of monolignol 4‐O‐methyltransferases in rice

Author:

Dwivedi Nidhi12,Yamamoto Senri3,Zhao Yunjun1,Hou Guichuan4,Bowling Forrest1,Tobimatsu Yuki3ORCID,Liu Chang‐Jun12ORCID

Affiliation:

1. Biology Department Brookhaven Nation Laboratory Upton New York USA

2. Feedstocks Division Joint BioEnergy Institute Emeryville CA USA

3. Research Institute for Sustainable Humanosphere Kyoto University Gokasho, Uji Kyoto Japan

4. Dewel Microscopy Facility Appalachian State University Boone North Carolina USA

Abstract

SummaryGrass lignocelluloses feature complex compositions and structures. In addition to the presence of conventional lignin units from monolignols, acylated monolignols and flavonoid tricin also incorporate into lignin polymer; moreover, hydroxycinnamates, particularly ferulate, cross‐link arabinoxylan chains with each other and/or with lignin polymers. These structural complexities make grass lignocellulosics difficult to optimize for effective agro‐industrial applications. In the present study, we assess the applications of two engineered monolignol 4‐O‐methyltransferases (MOMTs) in modifying rice lignocellulosic properties. Two MOMTs confer regiospecific para‐methylation of monolignols but with different catalytic preferences. The expression of MOMTs in rice resulted in differential but drastic suppression of lignin deposition, showing more than 50% decrease in guaiacyl lignin and up to an 90% reduction in syringyl lignin in transgenic lines. Moreover, the levels of arabinoxylan‐bound ferulate were reduced by up to 50%, and the levels of tricin in lignin fraction were also substantially reduced. Concomitantly, up to 11 μmol/g of the methanol‐extractable 4‐O‐methylated ferulic acid and 5–7 μmol/g 4‐O‐methylated sinapic acid were accumulated in MOMT transgenic lines. Both MOMTs in vitro displayed discernible substrate promiscuity towards a range of phenolics in addition to the dominant substrate monolignols, which partially explains their broad effects on grass phenolic biosynthesis. The cell wall structural and compositional changes resulted in up to 30% increase in saccharification yield of the de‐starched rice straw biomass after diluted acid‐pretreatment. These results demonstrate an effective strategy to tailor complex grass cell walls to generate improved cellulosic feedstocks for the fermentable sugar‐based production of biofuel and bio‐chemicals.

Funder

Japan Society for the Promotion of Science

U.S. Department of Energy

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3