Alternaria mycotoxin degradation and quality evaluation of orange juice by ozone treatment

Author:

Wang Xiaoyuan1ORCID,Liu Qing1,Han Yike1,Zong Wei1,Ge Zhenzhen1,Wei Xiaopeng1

Affiliation:

1. Zhengzhou University of Light Industry School of Food and Bioengineering Zhengzhou China

Abstract

AbstractThe effect of ozone treatment on the degradation of two Alternaria mycotoxins, alternariol (AOH) and alternariol monomethyl ether (AME), in both aqueous solution and orange juice was investigated. In addition, the quality of orange juice after ozone treatment was evaluated. The results demonstrated that ozone treatment effectively eliminated AOH and AME. In an aqueous solution, AOH exhibited a reduction of 57.95%, while AME decreased by 40.24% after 5 s treatment. And the two toxins could be almost completely degraded within 40 s. Moreover, an alkaline condition with a pH value of 10 facilitated complete degradation within just 15 s of treatment. Furthermore, higher temperatures may enhance the degradation percentage. Regarding orange juice, the degradation percentages of AOH and AME after ozone treatment for 600 s were recorded as 51.86% and 49.04%, respectively, which were comparatively lower than those observed in aqueous solution. The toxin degradation increased with longer treatment times and higher flow rates, but decreased with the initial concentration of mycotoxins. Meanwhile, the results of the quality evaluation showed that the color and browning index (BI) of orange juice did not change significantly, while the pH value was reduced. Additionally, the clarification, antioxidant properties, and stability of orange juice were significantly improved after ozone treatment. In conclusion, ozone treatment is an effective approach for degrading Alternaria mycotoxins while also improving certain quality parameters within a given treatment time frame. Therefore, it can be considered a promising non‐thermal alternative technology for removing Alternaria mycotoxins from food systems.Practical applicationsThe Alternaria fungus has the capacity to infect a wide range of crops, with infections occurring during various stages such as planting, transportation, and processing. Ozone technology has been extensively utilized in drinking water treatment, wheat flour treatment, wastewater treatment, aquaculture, and medical industries. However, current methods for controlling mycotoxins fail to meet industry demands for high removal rates, environmental friendliness, efficiency, and convenience as well as low‐cost maintenance required to preserve the sensory quality and nutritional value of food products. Therefore, there is an urgent need to explore novel approaches that can effectively address these challenges in practical production settings. Furthermore, the parameter optimization of specific technologies within the food sector remains underdeveloped and requires further research. In this context, ozone technology holds promise for controlling Alternaria mycotoxins degradation in orange juice while offering valuable insights into toxin degradation within the beverage industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3