Keyword‐Assisted Topic Models

Author:

Eshima Shusei1ORCID,Imai Kosuke1ORCID,Sasaki Tomoya2ORCID

Affiliation:

1. Harvard University

2. Massachusetts Institute of Technology

Abstract

AbstractIn recent years, fully automated content analysis based on probabilistic topic models has become popular among social scientists because of their scalability. However, researchers find that these models often fail to measure specific concepts of substantive interest by inadvertently creating multiple topics with similar content and combining distinct themes into a single topic. In this article, we empirically demonstrate that providing a small number of keywords can substantially enhance the measurement performance of topic models. An important advantage of the proposed keyword‐assisted topic model (keyATM) is that the specification of keywords requires researchers to label topics prior to fitting a model to the data. This contrasts with a widespread practice of post hoc topic interpretation and adjustments that compromises the objectivity of empirical findings. In our application, we find that keyATM provides more interpretable results, has better document classification performance, and is less sensitive to the number of topics.

Publisher

Wiley

Subject

Political Science and International Relations,Sociology and Political Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3