Affiliation:
1. Department of Renewable Resources University of Alberta Edmonton Alberta Canada
2. State Key Laboratory of Biocontrol, School of Ecology Sun Yat‐sen University Guangzhou China
Abstract
AbstractForest soil CO2 efflux (FCO2) is a crucial process in global carbon cycling; however, how FCO2 responds to disturbance regimes in different forest biomes is poorly understood. We quantified the effects of disturbance regimes on FCO2 across boreal, temperate, tropical and Mediterranean forests based on 1240 observations from 380 studies. Globally, climatic perturbations such as elevated CO2 concentration, warming and increased precipitation increase FCO2 by 13% to 25%. FCO2 is increased by forest conversion to grassland and elevated carbon input by forest management practices but reduced by decreased carbon input, fire and acid rain. Disturbance also changes soil temperature and water content, which in turn affect the direction and magnitude of disturbance influences on FCO2. FCO2 is disturbance‐ and biome‐type dependent and such effects should be incorporated into earth system models to improve the projection of the feedback between the terrestrial C cycle and climate change.
Funder
National Natural Science Foundation of China
Natural Sciences and Engineering Research Council of Canada
Subject
Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献