Estimation of Time-Specific Intervention Effects on Continuously Distributed Time-to-Event Outcomes by Targeted Maximum Likelihood Estimation

Author:

Rytgaard Helene C. W.1ORCID,Eriksson Frank1,van der Laan Mark J.2

Affiliation:

1. Section of Biostatistics, University of Copenhagen , Copenhagen , Denmark

2. Division of Biostatistics, University of California , Berkeley, California , USA

Abstract

Abstract This work considers targeted maximum likelihood estimation (TMLE) of treatment effects on absolute risk and survival probabilities in classical time-to-event settings characterized by right-censoring and competing risks. TMLE is a general methodology combining flexible ensemble learning and semiparametric efficiency theory in a two-step procedure for substitution estimation of causal parameters. We specialize and extend the continuous-time TMLE methods for competing risks settings, proposing a targeting algorithm that iteratively updates cause-specific hazards to solve the efficient influence curve equation for the target parameter. As part of the work, we further detail and implement the recently proposed highly adaptive lasso estimator for continuous-time conditional hazards with L1-penalized Poisson regression. The resulting estimation procedure benefits from relying solely on very mild nonparametric restrictions on the statistical model, thus providing a novel tool for machine-learning-based semiparametric causal inference for continuous-time time-to-event data. We apply the methods to a publicly available dataset on follicular cell lymphoma where subjects are followed over time until disease relapse or death without relapse. The data display important time-varying effects that can be captured by the highly adaptive lasso. In our simulations that are designed to imitate the data, we compare our methods to a similar approach based on random survival forests and to the discrete-time TMLE.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3