Doubly robust estimation under covariate-induced dependent left truncation

Author:

Wang Yuyao1,Ying Andrew2ORCID,Xu Ronghui1ORCID

Affiliation:

1. Department of Mathematics, University of California San Diego , 9500 Gilman Drive , La Jolla, California 92093, USA

2. Department of Statistics and Data Science, The Wharton School, University of Pennsylvania , 265 South 37th Street , Philadelphia, Pennsylvania 19104, USA

Abstract

Summary In prevalent cohort studies with follow-up, the time-to-event outcome is subject to left truncation leading to selection bias. For estimation of the distribution of the time to event, conventional methods adjusting for left truncation tend to rely on the quasi-independence assumption that the truncation time and the event time are independent on the observed region. This assumption is violated when there is dependence between the truncation time and the event time, possibly induced by measured covariates. Inverse probability of truncation weighting can be used in this case, but it is sensitive to misspecification of the truncation model. In this work, we apply semiparametric theory to find the efficient influence curve of the expectation of an arbitrarily transformed survival time in the presence of covariate-induced dependent left truncation. We then use it to construct estimators that are shown to enjoy double-robustness properties. Our work represents the first attempt to construct doubly robust estimators in the presence of left truncation, which does not fall under the established framework of coarsened data where doubly robust approaches were developed. We provide technical conditions for the asymptotic properties that appear to not have been carefully examined in the literature for time-to-event data, and study the estimators via extensive simulation. We apply the estimators to two datasets from practice, with different right-censoring patterns.

Funder

National Institutes of Health

Herbert Wertheim School of Public Health and Halicioglu Data Science Institute

University of California San Diego

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proximal survival analysis to handle dependent right censoring;Journal of the Royal Statistical Society Series B: Statistical Methodology;2024-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3