A Bayesian Zero-Inflated Dirichlet-Multinomial Regression Model for Multivariate Compositional Count Data

Author:

Koslovsky Matthew D.1ORCID

Affiliation:

1. Department of Statistics, Colorado State University , Fort Collins, Colorado , USA

Abstract

Abstract The Dirichlet-multinomial (DM) distribution plays a fundamental role in modern statistical methodology development and application. Recently, the DM distribution and its variants have been used extensively to model multivariate count data generated by high-throughput sequencing technology in omics research due to its ability to accommodate the compositional structure of the data as well as overdispersion. A major limitation of the DM distribution is that it is unable to handle excess zeros typically found in practice which may bias inference. To fill this gap, we propose a novel Bayesian zero-inflated DM model for multivariate compositional count data with excess zeros. We then extend our approach to regression settings and embed sparsity-inducing priors to perform variable selection for high-dimensional covariate spaces. Throughout, modeling decisions are made to boost scalability without sacrificing interpretability or imposing limiting assumptions. Extensive simulations and an application to a human gut microbiome dataset are presented to compare the performance of the proposed method to existing approaches. We provide an accompanying R package with a user-friendly vignette to apply our method to other datasets.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

Reference42 articles.

1. The multivariate Poisson-log normal distribution;Aitchison;Biometrika,1989

2. Optimal predictive model selection;Barbieri;The Annals of Statistics,2004

3. Multivariate Bayesian variable selection and prediction;Brown;Journal of the Royal Statistical Society: Series B (Statistical Methodology),1998

4. Variable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis;Chen;The Annals of Applied Statistics,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Microbiome Data;Annual Review of Statistics and Its Application;2023-10-13

2. A Bayesian joint model for compositional mediation effect selection in microbiome data;Statistics in Medicine;2023-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3