Affiliation:
1. Department of Statistics Rice University Houston Texas USA
2. Department of Statistics Colorado State University Fort Collins Colorado USA
3. Department of Environmental & Radiological Health Sciences Colorado State University Fort Collins Colorado USA
Abstract
Analyzing multivariate count data generated by high‐throughput sequencing technology in microbiome research studies is challenging due to the high‐dimensional and compositional structure of the data and overdispersion. In practice, researchers are often interested in investigating how the microbiome may mediate the relation between an assigned treatment and an observed phenotypic response. Existing approaches designed for compositional mediation analysis are unable to simultaneously determine the presence of direct effects, relative indirect effects, and overall indirect effects, while quantifying their uncertainty. We propose a formulation of a Bayesian joint model for compositional data that allows for the identification, estimation, and uncertainty quantification of various causal estimands in high‐dimensional mediation analysis. We conduct simulation studies and compare our method's mediation effects selection performance with existing methods. Finally, we apply our method to a benchmark data set investigating the sub‐therapeutic antibiotic treatment effect on body weight in early‐life mice.
Subject
Statistics and Probability,Epidemiology