Generative Adversarial Shaders for Real‐Time Realism Enhancement

Author:

Salmi A.1ORCID,Cséfalvay Sz.1ORCID,Imber J.1ORCID

Affiliation:

1. Imagination Technologies United Kingdom

Abstract

AbstractApplication of realism enhancement methods, particularly in real‐time and resource‐constrained settings, has been frustrated by the expense of existing methods. These achieve high quality results only at the cost of long runtimes and high bandwidth, memory, and power requirements. We present an efficient alternative: a high‐performance, generative shader‐based approach that adapts machine learning techniques to real‐time applications, even in resource‐constrained settings such as embedded and mobile GPUs. The proposed learnable shader pipeline comprises differentiable functions that can be trained in an end‐to‐end manner using an adversarial objective, allowing for faithful reproduction of the appearance of a target image set without manual tuning. The shader pipeline is optimized for highly efficient execution on the target device, providing temporally stable, faster‐than‐real time results with quality competitive with many neural network‐based methods.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference48 articles.

1. ArjovskyM. BottouL.: Towards principled methods for training generative adversarial networks. InInternational Conference on Learning Representations(2017). URL:https://openreview.net/forum?id=Hk4_qw5xe. 6 9

2. BińkowskiM. SutherlandD. J. ArbelM. GrettonA.: Demystifying MMD GANs. InInternational Conference on Learning Representations(2018). URL:https://openreview.net/forum?id=r1lUOzWCW. 6

3. CordtsM. OmranM. RamosS. RehfeldT. EnzweilerM. BenensonR. FrankeU. RothS. SchieleB.: The cityscapes dataset for semantic urban scene understanding. InProceedings of the IEEE conference on computer vision and pattern recognition(2016) pp.3213–3223. 1 6

4. Sensor Transfer: Learning Optimal Sensor Effect Image Augmentation for Sim-to-Real Domain Adaptation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3