New hybrid data mining model for prediction of Salmonella presence in agricultural waters based on ensemble feature selection and machine learning algorithms
Author:
Affiliation:
1. Department of Computer Engineering, Faculty of Engineering Çankırı Karatekin University Çankırı Turkey
Publisher
Wiley
Subject
Microbiology,Food Science,Parasitology
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jfs.12903
Reference48 articles.
1. A review on feature selection for high dimensional data;Anukrishna P. R.;Proceedings of the International Conference on Inventive Systems and Control, ICISC 2017,2017
2. Application of the Random Forest Method to Analyse Epidemiological and Phenotypic Characteristics ofSalmonella4,[5],12:i:- andSalmonellaTyphimurium Strains
3. Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles
4. Majority vote feature selection algorithm in software fault prediction
5. Artificial neural network modelling: a summary of successful applications relative to microbial water quality
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial intelligence derived categorizations significantly improve HOMA IR/β indicators: Combating diabetes through cross-interacting drugs;Computers in Biology and Medicine;2024-09
2. Enhanced deep learning based decision support system for kidney tumour detection;BenchCouncil Transactions on Benchmarks, Standards and Evaluations;2024-06
3. Machine learning approach for predicting cardiovascular disease in Bangladesh: evidence from a cross-sectional study in 2023;BMC Cardiovascular Disorders;2024-04-18
4. A tutorial-based survey on feature selection: Recent advancements on feature selection;Engineering Applications of Artificial Intelligence;2023-11
5. A Meta-Heuristic Algorithm-Based Feature Selection Approach to Improve Prediction Success for Salmonella Occurrence in Agricultural Waters;Tarım Bilimleri Dergisi;2023-09-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3