Artificial neural network modelling: a summary of successful applications relative to microbial water quality

Author:

Brion G.M.1,Lingireddy S.1

Affiliation:

1. Dept of Civil Engineering, University of Kentucky, 161 Raymond Bldg., Lexington, Kentucky, 40506-0281, USA

Abstract

Artificial neural networks (ANN) are modelling tools that can be of great utility in studies of microbial water quality. The ability of ANNs to work with complex, inter-related multiparameter databases and provide superior predictive power in non-linear relationships suits their application to microbial water quality studies. To date ANNs have been successfully applied (a) for the prediction of peak microbial concentrations, (b) to sort land use associated faecal pollution sources and relative ages of runoff and (c) towards the selection and study of surrogate parameters. Predictions of peak microbial contamination or faecal pollution sources have been greater than 90% accurate. The importance of a subgroup of organisms that are isolated by the total coliform membrane filter test on m-Endo media in defining faecal sources was revealed through parameter selection exercises. The result is the definition of a new bacterial ratio that can be directly related to the age of faecal contamination in animal impacted runoff.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3